2020届高考数学一轮复习新课改省份专用学案:第八章 第七节 第3课时 题型上——全析高考常考的6大题型 Word版含解析
2020届高考数学一轮复习新课改省份专用学案:第八章 第七节 第3课时 题型上——全析高考常考的6大题型 Word版含解析第1页

  第3课时 题型上--全析高考常考的6大题型

  题型一 圆锥曲线中的定点问题

  圆锥曲线中的定点问题一般是指与解析几何有关的直线或圆过定点的问题(其他曲线过定点太复杂,高中阶段一般不涉及),其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:

  一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).

  二求:求出定点所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.

  三定点:对上述方程进行必要的化简,即可得到定点坐标.

  [典例] (2019·成都一诊)已知椭圆C:+=1(a>b>0)的右焦点F(,0),长半轴的长与短半轴的长的比值为2.

  (1)求椭圆C的标准方程;

  (2)设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N,若点B在以线段MN为直径的圆上,证明直线l过定点,并求出该定点的坐标.

  [解] (1)由题意得,c=,=2,a2=b2+c2,

  ∴a=2,b=1,

  ∴椭圆C的标准方程为+y2=1.

  (2)当直线l的斜率存在时,设直线l的方程为y=kx+m(m≠1),M(x1,y1),N(x2,y2).

  联立,得消去y可得(4k2+1)x2+8kmx+4m2-4=0.

  ∴Δ=16(4k2+1-m2)>0,x1+x2=,x1x2=.

  ∵点B在以线段MN为直径的圆上,

  ∴\s\up7(―→(―→)·\s\up7(―→(―→)=0.

  ∵\s\up7(―→(―→)·\s\up7(―→(―→)=(x1,kx1+m-1)·(x2,kx2+m-1)=(k2+1)x1x2+k(m-1)(x1+x2)+(m-1)2=0,

∴(k2+1)+k(m-1)+(m-1)2=0,