分析(1)利用定积分的性质和微积分基本定理求值,但要根据积分变量的范围,用好被积函数的解析式.(2)在求被积函数的原函数时,要注意积分变量是x,而不是t.
解(1)由√(x^2 )={■(x", " x≥0"," @"-" x"," x<0"," )┤
得∫_("-" a)^a▒ √(x^2 )dx=∫_0^a▒ xdx+∫_("-" a)^0▒ (-x)dx
=1/2x2"|" _0^a-1/2x2"|" _("-" a)^0=a2.
(2)∫_1^2▒ (t+2)dx=(tx+2x)"|" _1^2=(2t+4)-(t+2)=t+2.
★11.已知f(a)=∫_0^1▒ (2ax2-a2x)dx,求f(a)的最大值.
解由题意知f(a)=∫_0^1▒ (2ax2-a2x)dx
=(2/3 ax^3 "-" 1/2 a^2 x^2 ) "|" _0^1=2/3a-1/2a2.
∴f(a)=2/3a-1/2a2=-1/2 (a"-" 2/3)^2+2/9.
∴当a=2/3时,f(a)max=2/9.
★12.如图,直线y=kx分抛物线y=4x-x2与x轴所围平面图形为面积相等的两部分,求k的值.
解抛物线y=4x-x2与x轴的两个交点的横坐标分别为x1=0,x2=4,
所以抛物线与x轴所围平面图形的面积S=∫_0^4▒ (4x-x2)dx=(2x^2 "-" x^3/3) "|" _0^4=32-64/3=32/3.
抛物线y=4x-x2与直线y=kx的两个交点的横坐标分别为x3=0,x4=4-k,
所以S/2=∫_0^(4"-" k)▒ (4x-x2)dx-∫_0^(4"-" k)▒ kxdx Z
=∫_0^(4"-" k)▒ (4x-x2-kx)dx
=((4"-" k)/2 x^2 "-" x^3/3) "|" _0^(4"-" k)=1/6(4-k)3.
又知S=32/3,所以1/6(4-k)3=16/3,于是k=4-∛32=4-2∛4.