8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线 垂直,记作.
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内 -- 有无数个公共点
(2)直线与平面相交 -- 有且只有一个公共点
(3)直线在平面平行 -- 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
例1下列命题中正确的个数是( )
⑴若直线L上有无数个点不在平面内,则L∥
(2)若直线L与平面平行,则L与平面内的任意一条直线都平行
(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行
(4)若直线L与平面平行,则L与平面内任意一条直线都没有公共点
(A)0 (B) 1 (C) 2 (D)3
教学平面与平面的位置关系:
① 以长方体为例,探究相关平面之间的位置关系? 联系生活中的实例找面面关系.
② 讨论得出:相交、平行。
→定义:平行:没有公共点;
相交:有一条公共直线。
→符号表示:α∥β、 α∩β=b
→举实例:...
③ 画法:相交:......
平行:使两个平行四边形的对应边互相平行
④ 练习: 画平行平面;画一条直线和两个平行平面相交;画一个平面和两个平行平面相交
探究:A. 分别在两平行平面的两条直线有什么位置关系?
B. 三个平面两两相交,可以有交线多少条?
C. 三个平面可以将空间分成多少部分?
D. 若,,则
三、巩固练习