且0<π/4<π/3<π/2,y=sin x在(0"," π/2)上是增加的,
∴sinπ/4
(2)∵△ABC为锐角三角形,
∴A∈(0"," π/2),且A+B>π/2,
∴A>π/2-B,且π/2-B∈(0"," π/2).
又y=sin x在(0"," π/2)上是增加的,
∴sin A>sin(π/2 "-" B),即sin A>cos B.
9.已知sin x+sin y=1/3,求M=sin x+sin2y-1的最大值与最小值.
解因为sin x+sin y=1/3,所以sin x=1/3-sin y.
因为-1≤sin x≤1,所以{■("-" 1≤1/3 "-" siny≤1"," @"-" 1≤siny≤1"," )┤
解得-2/3≤sin y≤1.
又易知M=sin x+sin2y-1=(siny"-" 1/2)^2-11/12,
所以当sin y=-2/3时,Mmax=4/9;
当sin y=1/2时,Mmin=-11/12.
B组 能力提升
1.函数y=|sin x|的一个单调递增区间是( )
A.("-" π/4 "," π/4) B.(π/4 "," 3π/4)
C.(π"," 3π/2) D.(3π/2 "," 2π)
解析画出函数y=|sin x|的图像(图略),易知选C.
答案C
2.导学号93774018定义在R上的奇函数f(x)的周期是π,当x∈[0"," π/2]时,f(x)=sin x,则f((2" " 021π)/3)的值为( )
A.-1/2 B.1/2 C.-√3/2 D.√3/2
解析f((2" " 021π)/3)=f((2" " 021π)/3 "-" 674π)=f("-" π/3)
=-f(π/3)=-sinπ/3=-√3/2.
答案C
3.已知α,β∈(0"," π/2),且cos α>sin β,则α+β与π/2的大小关系是( )
A.α+β>π/2 B.α+β<π/2
C.α+β≥π/2 D.α+β≤π/2
解析因为cos α>sin β,
所以sin(π/2 "-" α)>sin β.
而α,β∈(0"," π/2),
所以π/2-α∈(0"," π/2).
由y=sin x的单调性,知π/2-α>β,
所以α+β<π/2.
答案B
4.若函数y=sin x在[0,a]上是增加的,则a的取值范围为 .