9.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面 A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(2)设(1)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.(锥体体积公式:V=Sh,其中S为底面面积,h为高)
10.(本小题满分12分)如下图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(1)证明:CD⊥平面PAE;
(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.