2018-2019学年人教A版选修2-2 1.3导数在研究函数中的应用2 教案
2018-2019学年人教A版选修2-2        1.3导数在研究函数中的应用2   教案第2页



结论 思考1中点d叫做函数y=f(x)的极小值点,f(d)叫做函数y=f(x)的极小值;点e叫做函数y=f(x)的极大值点,f(e)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.

思考2 函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?

答 函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个.

思考3 若某点处的导数值为零,那么,此点一定是极值点吗?举例说明.

答 可导函数的极值点处导数为零,但导数值为零的点不一定是极值点.可导函数f(x)在x0处取得极值的充要条件是f′(x0)=0且在x0两侧f′(x)的符号不同.

例如,函数f(x)=x3可导,且在x=0处满足f′(0)=0,但由于当x<0和x>0时均有f′(x)>0,所以x=0不是函数f(x)=x3的极值点.

思考4 函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有 个极小值点.

【答案】 1

例1 求函数f(x)=x3-4x+4的极值.

解 f′(x)=x2-4.解方程x2-4=0,得x1=-2,x2=2.

由f′(x)>0,得x<-2或x>2;由f′(x)<0,得-2

当x变化时,f′(x),f(x)的变化情况如下表:

x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x) 单调递增 单调递减 - 单调递增 由表可知:当x=-2时,f(x)有极大值f(-2)=;

当x=2时,f(x)有极小值f(2)=-.