即(1-i)s=+50i=-1+51i
∴s=
=-26+25i.
6.已知f(z)=2z+-3i,f(+i)=6-3i,求f(-z).
分析:需先求出z,再代入函数中求值.
解:∵f(z)=2z+-3i,
∴f(+i)=2(+i)+-3i
=2+2i+z-i-3i=2+z-2i.
又知f(+i)=6-3i,∴2+z-2i=6-3i.
设z=a+bi(a,b∈R),则=a-bi,
∴2(a-bi)+(a+bi)=6-i,即3a-bi=6-i,
由复数相等定义解得a=2,b=1.
z=2+i,故f(-z)=f(-2-i)
=2(-2-i)+(-2+i)-3i=-6-4i.
7.计算.
解析:原式=
=[(1+i)2]3·(1+i)·
=[(1+i)2]3·(1+i)·(-i)7·=(-8i)(1+i)·i·=4(1+i)()
=()+()i.
8.计算:(1);
(2).