2017-2018学年北师大版必修4 2.3.1数乘向量 教案
2017-2018学年北师大版必修4 2.3.1数乘向量 教案第2页

法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a=λa+μa和λ(a+b)=λa+λb,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.

图1

对问题①,学生通过作图1可发现,=++=a+a+a.类似数的乘法,可把a+a+a记作3a,即=3a.显然3a的方向与a的方向相同,3a的长度是a的长度的3倍,即|3a|=3|a|.同样,由图1可知,

=++=(-a)+(-a)+(-a),

即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.

对问题②,上述过程推广后即为实数与向量的积.

我们规定实数λ与向量a的积是一个向量,这种运算叫作向量的数乘,记作λa,它的长度与方向规定如下:

(1)|λa|=|λ||a|;

(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.

由(1),可知λ=0时,λa=0.

根据实数与向量的积的定义,我们可以验证下面的运算律.

实数与向量的积的运算律

设λ、μ为实数,那么

(1)λ(μa)=(λμ)a;

(2)(λ+μ)a=λa+μa;

(3)λ(a+b)=λa+λb. 特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.

对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.

关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.

讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,