则.
在中,.
解法二:由题设底面,平面,则平面平面,交线为.
过点作,垂足为,故平面.过点作,垂足为,连结,故.因此是二面角的平面角.
由已知,可得,设,
可得.
,.
于是,.
在中,.
所以二面角的大小是.
所以二面角的大小是.
变式:如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱.
(1)证明//平面;
(2)设,证明平面.
证明:(Ⅰ)取CD中点M,连结OM.
在矩形ABCD中,,又,则,
连结EM,于是四边形EFOM为平行四边形.
又平面CDE, EM平面CDE, ∴ FO∥平面CDE
(Ⅱ)证明:连结FM,由(Ⅰ)和已知条件,在等边△CDE中,